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1 Introduction

This AASERT grant for the project entitled “Intelligent Flight Control of Uninhabited
Aerial Vehicles” began 1 June 1997. This report is the Final Report for the period 1 June 1997
- 30 April 2000. The grant number of this project is F49620-97-1-0406. The parcnt award for
this grant was F49620-95-1-0019. This grant ended 30 Septemnber 1997. The current parent
grant is '49620-98-1-0037.

The principal investigator for this graxlt' is Professor Dennis S. Bernstein. This grant sup-
ported the rescarch of Dr. Tobin H. Van Pelt, who completed the Ph.D. degree in aerospace
engineering at the University of Michigan in April 2000. Dr. Van Pelt is a U.S. citizen.

The goal of this project was to develop, implement, and demonstrate intelligent flight control
technology. During the previous two reporting periods, construction of the flight test vehicle
Solus? was completed and flight tests were conducted validating various aircraft systems. The
paper [1] describes Solus? and its research objectives. Financial support for the hardware
development of this vehicle was provided by the University of Michigan.

Theoretical rescarch under this grant focused on developing identification methods that were
suitable for on-line implementation. The most recent research reported in [2] concerns the de-
velopment of a new linear identification method. This research improves standard least squares
estimates by applying a quadratic constraint on the system transfer function coefficients. This
work is being prepared for submission to IEEE Transactions on Automatic Control. Previous
research in [2] and [3] developed nonlinear identification methods. These methods are least
squares based and identify block-structured systems that contain static nonlinearities and dy-
namic linear blocks, and can be implemented on-line. The work in [2] and [3] has been submitted
to the International Journal of Control. Furthermore, previous rescarch in [4] considered lincar
identification methods that used sparse over-parameterizations. This rescarch is closely related
to adaptive control methods developed under the parent grant [5] and [6].

2 Identification

Empirical or data-based modeling, generally referred to as systemn identification, plays an
essential role in control systems engineering as well as many other branches of science and
engineering. While advances in robust and adaptive control methods for linear and nonlinear
systems have helped to decrease reliance on plant models, the fact remains that models continue
to play an important role in controller synthesis. Analytical models are essential for plant and
control architecture design prior to plant fabrication, but thesc models contain assumptions
that may be very difficult or impossible to verify. Consequently. such models are rarely accu-
rate enough to provide precise prediction of the plant behavior for tuning high performance
controllers. On the other hand, models obtained from system identification methods incorpo-
rate the “real” system in a more direct manner through measured data, and thus reduce the
dependence on modeling assumptions.

Another use for systems identification is within adaptive control. Adaptive control methods
require an accurate model of the system in the presence of changing disturbances and when the
system itsell is varying due to anomalies such as sub-system failures, environmental changes, or
system deterioration. On-line identification techniques provide models of the plant in real-time,
and thus capture information about the changing system to be used by the adaptive controller.




One of the first challenges of system identification is the determination of a model structure.
Lincar models have been used extensively in control systems technology, but in practice, all real
systems possess nonlincaritics. Even when the plant dynamics can be well represented by lincar
models, it turns out that additional nonlinearities such as saturations and dead bands can be
introduced by sensors, actuators and amplifiers, thus degrading the accuracy of the resulting
linear model. Accordingly, both lincar and nonlinear identification techniques are needed.

An additional challenge of system identification is the presence of disturbances that corrupt
data obtained from an identification expertment. In practice, these disturbances could arise
from sensor inaccuracies, actuator granularity or ambient process noise. Sometimes these dis-
turbances are known and can be removed, but in general this is not the case. Whether or not
these ambient disturbances can be removed during the identification experiment, it is clear that
one of the primary challenges in system identification theory is the development of methods
that are insensitive to noisc-corrupted measurements. Additionally, when considering nonlinear
systems it is increasingly more difficult to distinguish between the presence of noise-corrupted
measurements and actual nonlinear phenomena.

One of the most commonly used identification techniques is the prediction error method with
a quadratic cost function. When the model structure to be identified is linear in parameters, this
technique leads to a linear least squares problem which has an analytic solution that is casily
implementable. Our research has focused on identifying lincar and nonlinear model structures
that can be identified using a least squares cost. Moreover, we have extended the standard least
squares theory by incorporating quadratic constraints. The motivation for using least squares
methods is that these methods have closed form solutions, are easily implemented on-line, and
continue to be one of the most commonly used mathematical tools in all of engineering.

3 Linear Identification

Least squares is a widely studied technique for data analysis and system identification, and
it has application throughout applied mathematics and engineering. A critical issue associated
with least squares identification is the effect of noise on the paramcter estimates. A desirable
property of any system identification procedure is that the estimates be consistent, that is,
the parameter estimate converges with probability one to the true parameter as the number
of data points increases. In the case of least squares it is well known that the parameter
estimates are not generally consistent. However, consistency is achieved when the residual
error is uncorrelated. Two specific cases in which this occurs are the case of white equation
crror and the case of a finite impulse response (FIR) model structure.

The case of white equation errvor is a highly unrealistic situation. Alternatively, FIR models
can be used within least squares. In this case all of the transfer function poles are constrained to
be zero, which is clearly a nou-valid assumption for infinite impulse response (IIR) systems. In
addition, the numerator coetlicients of a FIR transfer function are given by the impulse response,
or Markov paramcters of the system. Hence, it is interesting to note that the least squares
estimates of the numerator coefficients are consistent estimates of the Markov parameters of
the system even if the actual system s [IR.

There exist many variants of the least squares method that attempt to remedy the lack of
consistency.  Generalized least squares simultaneously builds a model of the system and the




noise, and is a special case of the prediction error method. Although generalized least squares
is consistent when using this method, the least squares cost is nonquadratic in the parameters
and requires numerical optimization procedures. In addition, consistency is guaranteed only
for the global minimizer which may be difficult to obtain numerically.

Another extension of least squares identification is the instrumental variable method, which
uses constructed data sequences, known as instruments, that are uncorrelated with the noisc.
[t has been shown that the instrumental variable method is generically consistent. However,
for finite data, the accuracy of the instrumental variable method may be poor and in general,
the choice of good instruments depends on the system and the noise in question.

When performing least squares identification, a specific paramecterization of the system
transfer function is assummed. In general. these parameterizations have an inherent ambiguity
which results from the simultaneous scaling of the numerator and denominator polynomials of
the transfer function. It is traditional to normalize the leading denominator coefficient of this
transfer function to be unity (ag = 1). Virtually every treatment of least squares identification
proceeds with the tacit assumption that this normalization entails no loss of generality with
respect to least squares optimization. Moreover, the transfer function is generally assumned to
be fully parameterized. The research in the next two sections loosens these assumptions on the
system parameterization in order to reduce the effects of noise and obtain consistency.

3.1 Quadratically Constrained Least Squares

In this research we consider a more general parameter normalization for least squares iden-
tification. Specifically, instead of fixing ag, we enforce a quadratic parameter constraint on all
of the system parameters. This approach admits the normalization ag = %1 as a special case.

The least squarcs problem with a quadratic constraint was considered in [7]. This problem
has the form

min||Az — bll;  subject to  ||Cz —dll2 = «a, (1)
xI
where A€ R, z e R, C e RP*7 be R™, d € R?, and a > 0. In the present rescarch we
consider the quadratically constrained least squares (QCLS) problem
mﬂin(}"‘M& subject to  OTNO =7, (2)

where M € R2n+2)x(2n+2) i nonnegative definite, N € R(2#+2)x(2n+2) is symmetric, 0 € R +2,
and v > 0. In (2), 0 represents the model parameter vector

T
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corresponding to the nth-order transfer function
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and T M@ is the square of the residual model error. Note that setting

¥y 0 - 0
N = (_)
0 - 0



is equivalent to enforcing the normalization ¢p = +1. Thus, the QCLS problem specializes to
the standard problem. It can be seen that (1) with & = 0 and d = 0 has the same form as
(2) with M = ATA and N = CTC. However, for the case of system identification, N may be
indefinite, which is not allowed in the framework of {7].

In this rescarch we show, rather surprisingly, that the parameter normalization ay = 1
entails a loss of generality with respect to least squares identification. Roughly speaking, pa-
rameter normalization (however invoked) and least squares optimization are not commutative
operations; in fact, cach choice of normalization (or quadratic constraint matrix N) potentially
leads to a different minimizer of the least squares cost. Consequently, the normalization ¢y = 1
actually subverts parameter consistency except for the white equation error and FIR modeling
cases mentioned above.

In the present research, for the case of finite data. we show that when a persistency condition
is satisfied, there always exists a quadratic constraint matrix N such that (2) yields the true
parameters of the system as a solution. However, the appropriate constraint matrix N depends
on the noise realization and thus cannot be implemented in practice. Furthermore, when a
persistency condition is satisfied, we show that there always exists a quadratic constraint matrix
N, which depends on the noise statistics, such that the QCLS estimate is consistent. It turns
out that, in the case of white equation error and FIR modeling, the appropriate constraint is
equivalent to fixing ap. For practical implementation with finite data, we develop an iterative
method for applying the technique that does not depend on knowledge of the noise statistics.

Numerical results demonstrate the improvement using QCLS identification. A 2nd order
example was considered with colored noise resulting in a signal-to-noise ratio of 15, and a two-
tone sinusoidal excitation input. Figure 1 shows the parameter estimate error for a typical run
using standard least squares, an instrumental variable method, the QCLS method with known
statistics and iterative QCLS. Both iterative QCLS and QCLS with known statistics exhibit
less paramecter error than standard least squares. Furthermore, the parameter estimate crror
of the iterative QCLS method is similar to that of the QCLS method with known statistics.
Additionally, the frequency response of standard least squares, instrumental variables, and
the iterative QCLS method, are shown in Figure 2. Again, the reduction in the parameter
estimation error of the iterative QCLS method yields the most accurate model with respect to
the frequency response of the system.

| Method [ [|A6]l, | Unstable Models (%) ]

LS 2.35 £ .0036 0
v 1.09 £ 2.19 37
QCLS 281 £.020 2
N=Q 150 £.0068 0

Table 11 Average paramcter estimation error.

Table 1 shows the average Af; plus or minus one standard deviation, over 100 ruuns consid-
cred, as well as the number of unstable models, for cach method. The results show that the
instrumental variable method is highly uncertain, and 37% of the identified models were unsta-
ble. Moreover, the standard least squares method produced models with large bias. [n contrast,
iterative QCLS produced models that had less bias than both the standard least squares and
the instrumental variable methods. Additionally, only 2% of the models were unstable when
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using iterative QCLS.

3.2 pu-Markov Parameterizations

While a FIR model structure can be used to consistently estimate Markov paramecters of a lin-
ear systew, it turns out that convergence can be slow and more rapidly converging algorithms
are of interest. Oune idea for improving the speed of convergence is suggested by the fact that
the leading numerator coeflicient of a fully parameterized transfer function is also a Markov
parameter of the system. Therefore it is natural to seck model parameterizations whose nu-
merator polynomials include an arbitrary number of Markov parameters without incorrectly
constraining the pole locations of the model structure. The objective in using such models is to
obtain consistent estimates of the system Markov parameters with a faster rate of convergence.

The siguificance of this result arises from the fact that the estimates of the Markov param-
eters can be extracted and used to construct a model of the system using realization theory.
Since this procedure can be carried out whether the system is FIR or IIR, it can thus be seen
that an “incorrect”™ model structure can effectively be used to construct a suitable identified
linear model.

A suitable model structure that satisfies the above criterion is given by the class of step-
ahead predictors. or equivalently, ARMARKOV (ARMA + Markov) models, which are non-
minimal parameterizations, some of whose numerator polynomial coefficients coincide with
Markov parameters. These models have been used extensively for adaptive control and identi-
fication [5-6].

Our previously reported research systematically developed and explored the properties of
transfer function parameterizations that explicitly contain Markov parameters in the numerator
polynomial. An interesting feature of these models is the relation between the number of
Markov paramecters appearing in the numerator and the sparse structure of the denominator
polynomial. We characterized this relationship by defining p-Markov parameterizations, which
arc non-mintmal parameterizations of a transfer. The principal result of this research guarantees
that when white noise excitation is used, the least squares estimates of the Markov parameters
are consistent under a very general class of noise models, and regardless of model order choice.
These Markov parameters can then be used with realization theory to obtain consistent model
estimates. The significance of this result for obtaining consistent model estimates is that precise
knowledge of the noise and the system order is no longer needed.

4 Nonlinear Identification

As previously reported, we have considered nonlinear identification using a model represen-
tation involving lincar dynamic blocks (£) and static nonlinear blocks (NV). These elements
san be interconnected in various configurations, thus representing a large class of nonlinear sys-
tems. The most frequently used structures are the Hammerstein model (M — L), the Wiener
model (£ — AN), and the nonlinear feedback model (£ - A — L), while other configurations
arce possible. Much of the previous work in nonlinear systems identification using this model
structure has assumed that one or more of these subsystems are known a priori. Other work
has relaxed this assumption while using iterative procedures.

In our rescarch we develop a novel technique for nonlincar system identification using the




Hammerstein, nonlinear feedback, and Hammerstien/noulinear feedback model structure. This
technique simultancously identifies the £ and A blocks without a priori information of the
system. The key to this rescarch is the development of a parameterization of the nonlinear
static maps that lead to a nonlincar least squares cost that can be reduced by means of an
overbounding technique. This overbound entails a suboptimal, but computationally tractable,
approximation to the original nonlincar least squares cost. In particular, this approach replaces
the nonlinear least squares optimization problem with a pair of standard computational proce-
dures, namely, lincar least squares optimization and fixed rank approximation in the Frobenius
nori.

This approach is based on a parameterization of the nonlinear static maps A that is linear
in paramecters. Although there are many such parameterizations, piecewise linear functions are
a prime candidate since they can approximate a large class of nonlincaritics. These approxi-
mations have been widely studied in the circuit theory literature as well as in nonlinear control
theory.

One of the challenges of this approach is in guaranteeing the invertibility of the regression
matrix that arises in the linear least squares optimization problem. It is well known that the
singularity of the regression matrix for problems involving a linear model structure is linked to
persistency of excitation conditions on the input. A key feature of our method is the develop-
ment of a “point-slope™ representation for the parameterization of the approximating piecewise
lincar function. This parameterization guarantees the invertibility of the regression matrix. We
have used this technique to develop nonlinear identification methods for Hammerstein, non-
linear feedback. and Hanunerstein/nonlinear feedback model structures and we are currently
working on Wiener and other more general configurations. Figure 3 shows an example of an
identified nonlinear map corresponding to an input saturation. The use of this representation
for the nonlinecar static map A is essential since using other representations such as standard
interpolation result in singular regression matrices.

5 Status of Flight Experiments

The goal of the UAV program at the University of Michigan is to develop and demonstrate
intelligent flight. control techniques that are relevant to UAV applications and advance the state
of the art in these arcas. Specifically, the research and experimental focns of our project is in
the fabrication of a testbed that is capable of performing on-line identification. fault detection
and reconfiguration of flight controls. The expected result is a reduction in the risk and length
of time associated with transitioning innovative rescarch to flight control applications.

Our first aireraft was the UAV Solus. Solus was a ll scale Citabria with an embedded control
system running a real-time operating system capable of communicating with a remote ground
station during operation. During flight tests of Solus, many of our avionics and telemetry
systems were tested. During these proof-of-concept flights it was discovered that the Citabria
airframe was not ideal for our application due to weight and volume coustraints and it was

determined that a new airframe was needed.

Design and construction of a new aircraft began in January of 1998 and .)'()11152 was completed
o
in December of 19938, This new aircraft uses an upgraded embedded flight control system derived
O (=]
from Solus. S()lll.\"z utilizes a dual-boom usher conficuration with a 5 h.p. two stroke engine.
’ 5 s}
The aircraft wetghs 55 Ibs. and has a 131 in. wingspan. A photo showing the new aircraft is
la) te] (=1
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Figure 3: Estimate of a saturation nonlinearity in a Hammerstein systeum.

show in Figure 5.

Solus?2 carries an extensive package of sensors. It has an inertial measurcment unit (IMU),
an air data system (ADS), and a Trimble GPS receiver with an Accupoint Differential GPS
correction unit. The design, construction, and calibration of the IMU and ADS were performed
at the University of Michigan over the past year. Additionally, there is an engine tachoweter to
measure engine speed and potentiometers mounted on each control surface to measure control
surface deflection.

The air data system measures the angle of attack, the angle of side-slip, and the dynamic
pressure of the vehicle. The angles are sensed with vanes connected to potentiometers that
align themselves with the local airflow, and the dynamic pressure is sensed with a Pitot probe
that is connected to a pressure transducer. The resulting system is capable of providing the
airspeed of the vehicle as well as the wind direction during flight.

The inertial measurement package counsists of 6 Analog Devices solid state accelerometers,
3 British Acrospace solid state rate gyroscopes, and a Honeywell 3 axis solid state fluxgate
magnetometer. Combined with the other sensor packages and appropriate filtering the complete
state of the aircraft can be measured. The calibration was carried out at the University of
Michigan using an Ideal Acrosmith rate table and Singer Scorsby table.

The UAV can be controlled using two processors on the aircraft that communicate through
dual ported RAM and are in contact with the instrumentation through a PC104 bus. Addition-
ally, the atrcraft is in contact with a ground station that consists of a single 120 MHz Pentium
laptop. This ground station provides the user interface, data storage, and flight planning ca-
pabilities. The flight computer and ground station operate under the QNX real-tiine operating




